RESEARCH PROJECTS SUPPORTED BY STRUCTURAL AND NATIONAL FUNDS
The BAEDA Lab contributed along the years in several research projects supported by structural and national funds
|
||
---|---|---|
Institution |
Project title |
Period |
(Scientific Responsibility for Politecnico di Torino: prof. Capozzoli Alfonso) |
2023 - 2025 |
|
(Scientific Responsability: prof. Corgnati Stefano Paolo) |
2022 - |
|
(Scientific Responsibility for Politecnico di Torino: prof. Caputo Barbara) |
2022 - |
|
(Scientific Responsibility for Politecnico di Torino: prof. Capozzoli Alfonso) |
2022 - 2025 |
|
(Scientific Co-Responsability prof. Serra Valentina) |
2020 - 2022 |
|
(Principal tutor: prof. Capozzoli Alfonso, Co-tutor prof. Causone Francesco) |
2020 - 2021 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2018 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2017 - 2018 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2016 - 2017 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2015 - 2016 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2014 - 2015 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2014 - 2015 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2013 - 2014 |
|
(Scientific Co-Responsability prof. Corgnati Stefano Paolo) |
2012 - 2013 |
|
|
||
Institution |
Project title |
Period |
(Scientific Responsibility for Politecnico di Torino: prof. Perino Marco) |
2019 - 2022 |
|
(Principal tutor: prof. Causone Francesco, Co-tutor: prof. Capozzoli Alfonso) - Video presentation of the project |
2018 - 2019 |
|
(Scientific Responsibility for Politecnico di Torino: prof. Corrado Vincenzo) |
2016 - 2019 |
-
PRIN 2022 MUR - UTMOST FDD: an aUToMated, Open, Scalable and Transparent Fault Detection and Diagnosis process for air-handling units based on a hybrid expert and artificial intelligence approach
UTMOST FDD: an aUToMated, Open, Scalable and Transparent Fault Detection and Diagnosis process for air-handling units based on a hybrid expert and artificial intelligence approach. From experimental open data to transfer model learning for the enhancement of energy management and indoor environmental quality in buildings. The project is funded by the European Union in the framework of the initiatives "Next Generation EU"