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Smart buildings require

advanced control solutions

DRL controllers emerged as promising
candidates to exploit flexibility sources in
buildings as PV and storage systems.
However, the direct implementation of DRL
controllers is not feasible since they should
be pre-trained offline on detailed/data-

temperature control. From this applications emerged that if
adequately trained, LSTM models could be employed to
train DRL controller, outperforming RBC.
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Transfer learning to enhance the
scalability of artificial intelligence-
based control strategies in buildings

Effective pre-training of DRL controllers by means of LSTMs

An automatic and recursive procedure including safety constraints was designed for a
heating system consisting of a boiler and radiators to effectively pre-train a DRL controller by
means of a LSTM model emulating building dynamics. The DRL agent managed the supply
water temperature setpoint to minimize energy consumption and enhancing indoor
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Closed-loop testing
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Transfer learning for DRL

controllers

Transfer learning (TL) for building control

applications have multiple advantages:

v Speeding-up the training process for DRL
controllers to achieve an optimal control

policy
v Avoiding the development of surrogate
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Online Transfer Learning applications
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An online TL strategy is tested in homogeneous and heterogeneous (different energy systems)
settings to transfer a DRL agent between buildings having different weather conditions, price
and occupancy schedules, building thermophysical properties. The DRL controller selected the
operation mode a cooling system consisting of chiller and TES and the fraction of cooling
energy delivered to the building to minimize electricity cost while enhancing indoor
temperature conditions.
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_ Total electricity cost for the controllers compared during the benchmarking phase
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Performance benchmark for Online TL with RBC, Offline DRL and Online DRL

Cumulated sum of temperature violations for the controllers compared during the benchmarking phase
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